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To facilitate the theoretical prediction of the evolution of a short gravity wave on a 
long wave of finite amplitude, we consider a model where the long wave is 
represented by Gerstner’s exact but rotational solution in Lagrangian coordinates. 
Analytical formulae for the modulation of an infinitesimal irrotational short wave 
are shown to be qualitatively accurate in comparison with the numerical results by 
Longuet-Higgins (1987) and with the analytical results by Henyey et al. (1988) for 
irrotational long waves. Discrepancies are generally of second order in the long-wave 
steepness, consistent with the vorticity in Gerstner’s solution. Weakly nonlinear 
short waves are shown to be parametrically excited by the long wave over a long 
time. In particular, multiple bands of modulational instability appear in the 
parameter space. Numerical calculations of the nonlinear evolution equation show 
the onset of chaos for sufficiently large parameter a = ~(kA)~/ (2a/cr ) ,  where e k A  is 
the short-wave steepness and (&,a) the frequency of the (long, short) wave. 
Furthermore, if the short-wave amplitude A is approximated by a two-mode 
truncated Fourier series, the evolution equation reduces to a non-autonomous 
Hamiltonian system. The numerical solutions confirm that the onset of chaos is an 
inherent feature of the parametrically excited nonlinear system. 

1. Introduction 
The exchange of energy among waves of different lengths is an important 

dynamical process on the surface of the ocean. Recent stimulus for studying this 
topic stems from the fact that radar waves Bragg-scattered by the sea surface are in 
the typical range from a few centimeters (X-band) to  a few tens of centimetres (L- 
band). Proper interpretation of the SAR images for large-scale surface features 
requires sound knowledge of the hydrodynamic interaction between short and long 
scales, particularly between short surface waves of O( 1-10) cm and long surface 
waves of O(10-1000) m. 

Longuet-Higgins & Stewart (1960) first developed a theory on the weak interaction 
between a train of short waves and a train of long waves, both of which had low 
amplitudes. They deduced simple formulae showing the shortening and steepening of 
short waves when the long-wave crests pass beneath them. More recently Longuet- 
Higgins (1987) considered the case where the long wave is an irrotational Stokes 
wave of finite amplitude up to the maximum height. By an efficient numerical 
algorithm the long wave is first calculated. The modulation of the short wave during 
the passage of a few long wave crests is found to  be considerably enhanced by the 
long wave. Henyey et al. (1988) have developed a theory for the linearized evolution 
of short waves on a general two-dimensional long-wave field. Assuming irrotationa,l 
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flow, they employed a Hamiltonian formulation and deduced tQe action conservation 
law for the short waves. Numerically, Kharif (1990) has shown that Longuet- 
Higgins’ calculations can be alternatively obtained by considering the stability of 
long waves subjected to  superharmonic perturbations. Zhang & Melville (1900) have 
extended these calculations and further deduced the slow modulation equation of 
Schrodinger form for the envelope of a weakly nonlinear short wave. With the 
coefficients obtained from the numerical solution of the long wave, short waves which 
remain steady along the long wave profile were computed. 

As is known for a single wave train in calm sea, the long-term cvolution after the 
initial stage of Benjamin-Feir (sideband) instability involves a complex interplay 
between nonlinearity and dispersion. The short-wave envelope undergoes recursive 
transitions due to the energy exchange between the unstable sidebands and the 
carrier wave. Owing to the long wave, the short wave is in an apparent gravity field 
oscillatory in time, hence is further subjected to parametric excitation. Since simple 
nonlinear oscillations under similar excitation are known to respond chaotically, it 
is interesting to examine whether and how chaos can appear in the short waves. To 
facilitate theoretical calculations and physical deductions, we have chosen to model 
the long wave by Gerstner’s simple and exact solution in Lagrangian coordinates. 
Admittedly, Gerstner’s wave possesses finite vorticity of a special form and has a 
free-surface profile differing noticeably from the irrotational theory of Stokes, if the 
steepnes is sufficiently great. But the maximum vorticity at the free surface is 
proportional to the square of the long-wave steepness KB and need not be very large 
for moderate steepness, say KB Q 0.3. Physical deductions may still be reasonable 
with a considerable gain in analytical simplicity. 

In  this paper we shall first show that Longuet-Higgins’s (1987) numerical results 
on the modulation of infinitesimal short waves on a long Stokes wave can be 
qualitatively well reproduced by explicit formulae for a Gerstner’s wave with 
KB < 0.4 (according to the irrotational theory, the maximum steepness is 
KB w 0.4432). Agreement with the irrotational theory by Henyey et al. (1988) is also 
within O(K2B2) a t  least, which is comparable to the vorticity difference in the long 
waves. The asymptotic equation governing the nonlinear evolution of a slowly 
modulated short-wave envelope is deduced with all its coefficients given explicitly in 
terms of the long wave. The solution for a short Stokes wave riding on a long wave 
is now simple. By applying Floquet theory, the linearized instability of sidebands is 
calculated, showing the emergence of new unstable bands when the parameter a 
increases. Numerical results for a broad range of a are discussed for the post- 
instability evolution of the short-wave envelope when disturbed by the most 
unstable sidebands. Evidence of chaos is found where a is sufficiently large. To give 
further insight into the inherent tendency toward chaos we study a truncated non- 
autonomous dynamical system involving just  two unstable modes (the carrier waves 
and the sidebands). The numerical results confirm the general trend toward chaos. 
Thus wavelwave interactions appear to be a powerful deterministic cause 
contributing to the random appearance of the ocean surface. 

2. Exact and perturbation equations in Lagrangian coordinates 
In the Lagrangian description, the dependent variables are the coordinates ( X ,  2) 

of the instantaneous position of a particle, while the independent variables are time 
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and two parameters (a,  c) characterizing the particle, such as its initial position. For 
two-dimensional problems, the continuity equation reads 

axaz axaz 
J ( a ,  c ,  t )  = ----- = J ( a ,  c ,  0). 

aa ac ac aa 

The Jacobian J reduces to  unity if (a ,  c )  represents the initial position. Constancy of 
vorticity gives 

On thc free surface designated by c = 0, the pressure is assumed to vanish 

where g is the gravitational acceleration. 

X ( a , c , t )  = a+x(a,  c , t ) ,  

We now define the Lagrangian particle displacements (x, z )  by 

Z(a ,c , t )  = c+z(a , c , t ) .  

Equations (2.1 )-( 2.3) become respec ti vely 

and 
a Z x  a2 axazx aZaZZ 
-+g-+--+-- = 0, 
at2 aa aa at2 aaat2 

c = 0. 

As c - t -  00, the displacements diminish to  zero. 
Let us consider two trains of deep-water waves with one very much shorter than 

the other. Omitting the formality of normalization, we use the wavenumber k and 
frequency cr of the short wave as the basic space- and timescales. Let E -4 1 be a small 
ordering parameter. We shall assume specifically that the wavenumber, the intrinsic 
frequency, and the amplitude of the short wave at the leading order are {k, cr, €A} and 
the corresponding quantities of the exact long wave are ( E ~ K , ~ S Z , B / E ~ } ,  where k, cr, 
A ,  K ,  Q and B are all regarded as being O(1). In  this problem the short wave is 
expected to be modulated either by interaction with the long wave, or by its own 
nonlinearity, while the long wave is assumed to be uniform in space and time. Let the 
following multiple-scale coordinates and times be introduced : 

In view of the scale assumptions, the Lagrangian displacements can be expanded 
in perturbation series as follows : 

where xU2 and .z2 represent long-wave displacements, which depend only on 
(a2, c2, t l ) .  The remaining terms correspond to short waves and may depend on all 
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scales. Upon introducing (2.9) in (2.5)-(2.7), and collecting terms of similar order in 
8, we obtain the following sequence of governing equations. 
O(1): 
Continuity 

Free-surface boundary condition 

ax-, a%- a22-, 
1+-  +L g+- = o ,  c = o .  %{ aa,} aa, { at; } 

(2.10a) 

(2.10b) 

Both of these equations involve only long-wave displacements. The vorticity 
equation has no contribution a t  this order. 
O ( € )  : 
Continuity 

ax, a%, aX-,az1 ax-,aZ, az-,axl a2 ,ax -+-+ +=L= 0 
aa ac aa, ac ac, aa aa, ac ac, aa ' 

a3x1 a32, a2 , a32, a%-, a32, ax-, a3x, ax-, a3x, 

acatz aaat2 aa, a m  ac, aaatz aa, ac at2 ac, aaatz = O ,  

Vorticity 

--__ +: + 

Free-surface boundary condition 

Continuity 

Vortici ty 

(2.11 a )  

(2.11 b )  

(2.114 

(2.12a) 
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Free-surface boundary condition 

The O(e3)  governing equations are lengthy and may be found in Appendix A. 

3. The long wave of Gerstner 
Since the long waves are not affected a t  the leading order by the short waves, we 

set the part involving only x - ~  and z - ~  of the vorticity equation (2.12b) to zero, i.e. 

for c < 0. This equation and (2.10a, b) admit the exact solution derived by Gerstner 
(1802) (a thorough discussion in English is available in Kochin, Kibel & Roze 1965) : 

(3 .2a ,  b )  x-, = B sin q5eKcg, xP2  = B cos q5eKez, 

where the phase q5 is defined as 

4 = Qt, -Ka, with Q2 = gK. (3 .2c,  d )  

Alternatively, the long-wave solution is 

X, = a ,  +B sin q5eKcz, Z, = c, +B cos q5eKcz. (3 .3a ,  b )  

Substitution of (3 .3)  into (2.10a) yields 

J = 1 -K2B2 e2’%, (3 .4)  

which is independent of time. It is well known that Gerstner’s wave has a finite 
vorticity 

which is greatest on the free surface and decays exponentially with depth. 
The free-surface elevation for Gerstner’s wave is obtained by elevating (3 .3b)  a t  

Z ,  = B cosq5. ( 3 . 6 ~ )  
c, = 0 :  

Upon defining the Eulerian phase as q5E = Bt,-KX,, we can derive from (3 .3a)  

q5E = q5-B sin$ (3.6b) 

Equations ( 3 . 6 ~ :  b )  define parametrically the free-surface elevation of Gerstner’s 
wave. 

It is also known (Kochin et al. 1965) that the mean vertical position of a fluid 
particle is 

2 -  - c 2 -L&B2 ezKcz (3 .7)  
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FIGURE 1.  Comparison of Gertsner (-) and Stokes (---) wave profiles for (a) KB = 0.1, 

(b) 0.2 and (c) 0.3. 

Hence the mean sea level is at 2, = -@YI2, and the zero-crossings are located a t  

For small KB,  (3.8) admits two solutions in the interval [0,2n]: 

The corresponding Eulerian phase $E a t  the zero crossing can be readily found from 
(3 .6b) .  For small KB, we get 

$Ecrossing x -L&B, or +l&B. (3.10) 

We compare in figure 1 the Stokes wave profiles computed from the very accurate 
series solution by Schwartz (1974) with Gerstner's wave profiles for KB = 0.1,0.2 and 
0.3. The agreement for KB = 0.1 is excellent while the differences become noticeable 
for KB = 0.2 and 0.3. From Schwartz (1974) the zero-crossing points of the Stokes 
wave are deduced to O(K5B5) accuracy in Appendix B, with the result 

$Ecrossing = in-'&B+gK3B3+W#?B5 + O(K7B7). (3.1 1) 

Note that the difference from Gerstner's theory (3.9) is O(KB) and relatively large. 

'0s $crossing = -!iKB. (3.8) 

$crossing z $c+i&B, or $r-im. (3.9) 
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4. Evolution equations for an irrotational short wave 
4.1. Short waves at the leading order 

Upon using (3.2) for Gerstner’s wave in (2.11a, b )  and keeping O ( E )  terms, we obtain 
from the continuity and vorticity equations 

ax a2 

aa ac 
{ l + K B c o s # } ~ + ( l - K B c o s # } ~ - K B s i n $  

and 

a3x1 

ac at2 aa at2 thatz  &atz 
a32, KB sin# {--L} a3x, a32 = 0. (4.lb) {~-KBcos$}-- {l+KBcos$}-- 

The dynamic free-surface boundary condition (2.1 1 c )  becomes 

{l-KBcos$] d+g’ +KBsin$ 2 - g -  = 0 ,  c = O ,  ( 4 . 1 ~ )  
:a} {:; 21 

where use has been made of ( 3 . 2 ~ )  and the dispersion relation (3.2d). Let the solution 
for first-order displacements take the following form : 

where xl0, zl0, xll and zll are unknown functions of c and of the slow coordinates a,, 
a2, t ,  and t , .  Denoting 

(4.3) 

we get from (4.la,  6 )  a set of first-order homogeneous differential equations 

( 4 . 4 ~ )  
av 
ac 

M- = kNV,  

where M and N are the following matrices: 

-iKBsin# 1-KBcos#), = ( I+KBcos$ iKBsin$ 1 
1 -KB cos $ iKBsin$ 1+KBcos$ ‘ 

M = (  
-iKB sin $ 

(4.4b, c) 
The solution that diminishes to zero a t  c + - co is 

v = A (i) e(xr+ixi)c, (4.5) 

where A(a,, a2,  t , ,  P) is the amplitude of the short wave and 

k( 1 -K2B2) 2kKB sin q5 
K,  = K -  (4.6a, b) 

Both K, and K~ dcpend on a, and t ,  through the long-wave phase 4. The imaginary 
part K~ corresponds to the vertical component of the Lagrangian wavenumber 
associated with the following phase function s”: 

1-2KBcos#+K2R2’ - 1-2KBcosq5+K2B2’ 

- 
8 = ka+qc-u t .  (4.7) 
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The free-surface dynamic boundary condition (4.1 c) then yields 
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a' = gk. (4.8) 

Thus in Lagrangian coordinates, the dispersion relation of the short waves is of the 
same form as that of the long wave, and does not depend explicitly on long-wave 
quantities. However, this does not remain so in the Eulerian coordinates, as will be 
shown later. 

4.2. General perturbation equations 
The solution at  O($) can be expanded in the following general form: 

x j  = xj,(al, c, t l )  +t i  C xj l (al ,  c, t,) eil(fa-gt) + c .c., j = 1,2,3 ,..., 
i 

z-1 
(4.9~) 

1 i  
xi = zj,(al, c, t,) +s Z,~(U, ,  c, t l )  eil(ta-ut) +C.C., j= 1,2,3 ,..., (4.9b) 

1-1 

where the displacement amplitudes xjl and zil depend on c, a,, a2 and t,. After 
substituting (4.9) in the continuity and vorticity equations, we separate the orders 
and harmonics to get the following typical non-homogeneous ordinary matrix 
differential equation : 

(4.10~) 

where U = (xi!, z ~ ~ ) ~  for j = 1,2, ... and 1 = 1, ..., j. With the dispersion relations for 
both short and long waves, the free-surface boundary condition takes the simple 
form 

(1 -KB cos $1 [ Z X , ~  - z j l ]  + iKBsin $[xj l  -Zz,,] = Hil , l  
(4.10 b) 

c = O ,  j=1,2,3 ,..., 1 = 1 ,  ..., j. 1 
4.3. The Stokes drift 

Upon collecting the zeroth harmonic terms from the continuity equation a t  order 
O(d), and from the vorticity equation a t  order O(d+2),  we obtain respectively two 
governing equations for xjo and zjo : 

- -KRsin$-+(l-KBcos$)s=qo,  ax*, ac ac j= 1,2,3, (4.11 a )  

(4.11 b) 
The dynamic free-surface boundary condition a t  O(d+') yields 

-KBsin$2+(1-KBcos$)--  ax.  azjo - H c = O ,  j= 1,2,3. (4.11~) 
a% 

In particular, (xlo,zlo) corresponds to the Stokes drift a t  the leading order. The 
forcing terms in (4.11 u-c) are 

(4.12 u-c ) 
a 

at1 
F,, = 0, G,, = - [2ak~, (A( '  eZrrc], H,, = 0. 
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Performing t,-integration of the vorticity equation (4.11 b)-(4.12 b )  and assuming 
zero vorticity at t, = 0, we deduce 

a210 - cos 4 - - 2ak~,IA1~ e2Krc 
ac at, ac at ac 1 32Zl0 

(1 -KB cos q5) %+hY? sin q5 ~- 

(4.13) 
It follows from the continuity equation (4.11a) and (4 .12~)  that 

az,o= KBsinq5 ax,, 
ac l - K B c o s q 5 ~ '  

(4.14) 

where the denominator never vanishes since KB < 1. If (4.14) is substituted in (4.13), 
we obtain, after simplifications, 

(4.15) 
1-KBcosq5 

akJAJ2 e2xrc, ($- 1yEo!q5) xlo = 1 - 2KB cos q5 + K2B2 

which can be easily solved to give 

which satisfies the dynamic free-surface boundary condition (4.11 c)-(4.12c). If the 
long wave is absent, KB = 0, this Stokes drift takes the familiar form: 

xl0 = ak eZkc 1' JAI2 dt,, zl0 = 0. (4.17) 

Note that (4.16) is valid up to (Qt,, q5) = O(1) which is sufficient for later purposes, 
but becomes unbounded as q5 - co. To get a uniformly valid solution for the Stokes 
drift itself one needs to add (x , , zo )  in the series expansions (2.9). 

The first-order short-wave displacement is now entirely determined : 

dt ,} (' -KB 'OS ') + I ( i, AeiB exre + c.c., 
KBsinq5 2 1 

(4.18) 
where K, and K~ are given by (4.6a, b )  and s" by (4.7). 

4.4. Linear evolution equation for the short wave 
Two governing equations for the first harmonic displacement a t  O(e2) are obtained 
from (4 .10~)  with (j, 1) = (2 , l )  and the forcing terms 

ere, (4 .19~)  

aA 
Q21 = i{ k r 2 - i % )  A - (1 f K B  cos q5 +iKB sin q5) - 

3% 

2 
-- (1 - KB cos q5 - iKB sin 4) 
a 

The free-surface boundary condition (4.10b) for (j, I )  = (2 , l )  is 

(1 -KB cos q5 + iKB sin q5) (x,, - z 2 , )  = H,,,  c = 0, (4 .20~)  



424 M .  Naciri and C .  C .  Mei 

with 
2i 

H,, = --(1-KBcos$-iKBsin$) 
0- 

(4.20b) 

The solution of the inhomogeneous matrix differential equation is 

[G,, +F,,] e-Krc’-iKic‘ d c’ (:) eKrC+iKiC 
1. 
2 U =  

1 -KB cos 9- iKB sin $ 
1 - 
2 [G,, -F21] eKrC’-iKiC’ dc‘ (: 1) e-Krc+iKiC, (4.21) 

+ 1 -KB cos $ + iKB sin $ 

where the lower limit of the first integral is left to be found. To evaluate the left-hand 
side of the dynamic condition on the free surface (4.20a), we note that the first 
integral in (4.21) does not contribute; the second term, however, gives 

[G,, -FZ1] eKrc-iKic dc. (4.22) 
1 - 

{x21 - z21’c=o - 1 - KB cos $ + iKB sin $ 

Comparison of (4.22) and ( 4 . 2 0 ~ )  then yields t.hc solvability condition : 

@, [G,,  -F,,] eKrc-iKic dc = H21.  (4.23) 

Note from (4.19a, b)  that (4.23) is independent of the Stokes drift. A Pimilar 
condition holds for the first harmonic displacements a t  arbitrary order d .  After 
evaluating the integrand from (4.19a, b ) ,  

2i a K  
G,, -F,, = -- (1 -KB cos $ - iKB sin $ ) - A  eKrceiK4c, (4.24) 

0- at, 

it follows that (4.25) 

or, equivalently, 

aA 0- aA SZKB sin $ -+--+ 
at, 2k aa, 1 - 2KB cos # + K2B2 

SZKE (1 + K2B2) cos $ - 2KB A = A-i-- 
1 - K2B2 1 - 2KB cos 4 + K2B2 

(4.26) 

after using (4.6u, b ) .  This equation governs the linear evolution of A over the scale 
range (a , ,  t l )  = O( 1) .  Its implication for the short-wave modulation will be examined 
in 95. 

With this solvability condition x , ~  and zZ1 can be completely determined: 

1 IAI2e2‘rcdtl 1 +KBcos$+iKBsin$ dA (r::) = jiuk2[ 1 - 2 2 K B ~ o s $ + K ~ B ~ - ~ ~ l - K B c o s 4 - i K B s i n 4 ~  

eK C i K . C  
2kcSZKB(KB - cos $ - i sin $) 

r e ’  - 
(1  -KB cos #-iKB sin 9) ( 1  -2- cos 9 +K2B2) ’} (:) 

- QKB( cos $ + i sin $) 
(T( 1 -K2B2) 

It is easy to show that the second harmonic vanishes, i.e. (x,,, z,,) = (0, 0), since the 
corresponding forcing terms all vanish, F,, = G,, = H,,  = 0 .  
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4.5. Nonlinear evolution equation for the ehort-wave amplitude 

We now invoke the solvability condition for (x,,, z3,) r, [G,, - F,,] eKrc-iKic dc = H,, .  (4.28) 

From the lengthy expressions for G,, and Fa,, we find, with the help of MACSYMA, 

ax,, azzl 2kKB sin q5 axzl 
G,,-F,, = i(l+KBcosq5-iKBsinq5) 

at, 

2i a2xZ1 2KB sin q5 i32z21 2ik 8221 

a ac at, O- acat, a at, 
-- (1 -KB cos q5) -- +-( 1 +KB cos q5) - 

aKaA 2 a2A 
(1 + KB cos q5 + iKB sin q5) --+- (1 +KB cos q5 + iKB sin q5) - 

at,aa, a aa, at, 

1 
a, 

+- (1 -KB cos q5 - iKBsin q5) 

eKrCeiKic. (4.29) 
2kQ2KB (cos q5 + i sin q5) 

a2( 1 -KB cos q3 - iKB sin q5) 
- 

The right-hand side of (4.28) is given by 

2i ax,, 2KB sin q5 az2, 
H,, = --(l-KBcOsq5)-- 

0- at, a at, 

- KBsinq5ax2, i 
k aa, I% 

2i 
--(i-KBcosq5-iKBsin$) , c = 0. (4.30) 
a 

The solution (4.16) for xl0 and z,,, (4.27) for x,, and z , ~  are now substituted in (4.29) 
and (4.30). After performing the integration, the result is found to be 

i3A a i3A ia a2A i0-k21AI2A -+--+--+ 
at, 2k aa, 8k2 aa; 2( 1 - 2KB cos q5 + K2B2) 

Q2KB sin q5( 1 + 2KB cos q5 - 3K2B2) A +- 
20- (1 - 2KB cos q5 +K2B2), 

iQ2KB pz(KB) c 0 s 2 ~ + ' ~ ( K B ) c 0 s ~ + p ~ ( K B ) A  = 0, (4.31) 
+ 2v( 1 - K2B2), (1 -2KB cos q5 +K2B2), 

where Y,(KB) are the following polynomials : 

P,(KB) 2(KB)5 +4(KB),- 2KB, (4.32 a) 

Pl(KB) -3(KB)s-7(KB)4+3(KB)2- 1 (4.323) 
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and P,(KB) E 7(KB)5-6(KB)3+3KB. (4.32 c) 

Equation (4.31) governs the second-order evolution of A over (u2, t 2 )  = O( 1) .  If e 
times (4.31) is added to the linear evolution equation (4.26), a combined evolution 
equations valid for (a l ,  t l )  d 0(1 /e )  is obtained: 

aA u dA -+--+ 
at, 2k au, 1 - 2KB cos $ +K2B2 

A 
SZKB sin $ RKB ( 1 + K2B2) cos $ - 2KB 

A-i 
1 - K2B2 1 - 2KB cos $ +K2B2 

ieu PA ied21AI2A eSZ2 KB sin $( 1 + 2KB cos $ - 3K2B2) A +--+ +- 
8k2 a ~ t  2( 1 -2KB cos $ +K2B2) 2a (1  - 2KB cos $ +K2B2)' 

ieR2KB P2(KB) cos2$+Pl(KB) cos$+Po(KB) 
A = O(e2) .  (4.33) 

+ 2 4  1 - K2B2)2 (1  -2KB cos +K2B2)2 

This is a cubic nonlinear Schrodinger equation with periodiuc coefficients expressed 
explicitly in terms of the long Gerstner wave. It rcduces to the familiar equation in 
the limit of KB = 0. 

By the following change of variables : 

0- c = al--tl, $ = Rt,-eKa,, (4.34u, b )  
2k 

it can be shown that 

aA - 1 KB sin q5 X B  ( 1  +K2B2) cos $ - 2KB A - - _  
a$ - 6 1 - 2KB cos $ +K2B2A +S( 1 -K2B2) 1 - 2KB cos $ +K2B2 

A 
€52 KB sin $( 1 + 2KB cos $ - 3K2B2) IAI2A -- iea a2A .eak2 

1- 
8SsLk2 a('2 2SR (1 - 2KB cos $ +K2B2)  2Su ( 1  - 2KB cos $ +K2B2)2 

where s = 1 - s(R/2u). (4.36) 

The $-dependent coefficients in (4.35) are 2n-periodic. For further simplification, we 
introduce the following transformation to remove the linear and imaginary term on 
the right : 

A((, $) = X d ( g ' ,  $) eif, ( = ck2& (4.37) 

where A is the short-wave amplitude in the absence of the long wave. It then follows 
that 

sin $ 
} - +K2B2 arctan { }] 1 +KB sin$ 

1 -KB 1 + cos $4 1 -K2B2 l + C O S $  

2KB sin $ 
1 - 2KB cos $ + K2B2 

-arctan{l+KB sin$ } 
1 -KB 1 + cos $ 

- ~ 4 ~ 4  + 2 ~ 2 ~ 2  - 1 arctan{ sin $ }] (4.38) 
( 1  -B2K2)2 1 +cos$ 
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and 

a d  1 KB sin q5 8 O 1 + 2KB cos q5 - 3K2B2 
[ l+--  ?@- = -j 1 -2KB cosq5+ K2B2 2 v 1 -2KB cosq5+K2B2 

iaL42d +0(€2), (4.39) 
ia a2d 
4 at2 1-21Bcosq5+K2B2 

where the parameter a is defined by 

(4.40) 

5. Linear modulation of short waves 
5.1. Amplitude modulation 

Over the timescale of a long-wave period, the short-wave modulation is governed by 
the linear equation (4.25), i.e. the 0 ( 1 )  terms of (4.33). Now the moving frame is 
sufficiently well described by 

U ‘g = a,--t,, $5 = Ot,. 2k 

The magnitude IAl of the short-wave amplitude satisfies 

-KB sin q5 
IAI, 1 - ~ K B  cos q5 + K ~ B Z  

-- alAl - 
aq5 

(5.la,  b )  

which can be integrated to  give 

(5.3) 

where K refers to the amplitude without the long wave. (Note that K is also the 
amplitude a t  the zero-crossing, cf. (3.8)). When the long-wave slope is small, KB < 1, 
the well-known result of Longuet-Higgins & Stewart (1960) is recovered : 

- IA I = (1-2KBcos++K2B2)-i, 
K 

(5.4) 
IA I - = 1 +KB cos q5 + O(K2B2). 
A 

For finite KB, the normalized short-wave amplitude a t  the crest (q5 = 0 ) ,  the trough 
(9 = K )  and at the point where the free surface of the long wave crosses the calm sea 
surface (cos q5 = -1sB) are given by 

IA lerossing = 1 

A (1  + 2KzB2)i ’ 

Equation (5.2) may also be written as 

(5 .5a,  b)  

(5.5c) 
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geff/g = ( 1  +K2B2 - 2KB cos $); (5 .7)  

is the effective gravity experienced by the short wave due to the acceleration g' of 
the long-wave surface, i.e. 

geff = g-g', (5 .8)  

with = -gKB(sin$, cos$). (5.9) 

The variation of geff/g vs. $ is compared with the calculations of Longuet-Higgins 
(1987) in figure 2 below; the agreement is rather good. 

Alternatively, (5.6) may be expressed as 

(5.10) 

which plays the same role as the law of wave-action conservation (Bretherton & 
Garrett 1969; Henyey et al. 1988). 

5.2.  Wavenumber modulation 

In view of (4.26) the short-wave phase s' must be corrected to  incorporate the effect 
of the phase r of A, i.e. 

c - wt + r($, KB, 0) + O ( E ) .  1 2KB sin $ s = ~ " + ~ ( $ , K B , o ) + o ( E )  = k a +  [ 1 - 2KB cos 4 +K2B2 
(5.11) 

Let us pass from the Lagrangian to the Eulerian reference frame by the 
transformation 

(5.12) 
B B 

a = X--sin$eKc*+O(E), €2 c = Z--cos$eKCz+o(€), €2 

Upon substituting (5.12) into (5 .11) ,  we obtain 

1 
S = ,S-,+S,+O(€), € ( 5 . 1 3 ~ )  

where 

and 2KB sin $ 2 - at + r($, KB, 0) 
So = k [ X +  1 - 2KB cos $ +K2B2 1 

(5.13b) 

( 5 . 1 3 ~ )  

Note that S ,  and r depend on X, and 2, through $ and c,, and on t , ,  whereas So 
depends on the fast Eulerian scales (X, 2, t ) .  In  the Eulerian frame, the wavenumber 
vector kE should be the Eulerian spatial gradient of the phase, i.e. 

kE = V S + E V ~ S + ~ ? V , S + O ( C )  = VSo+V,Sp2+O(s ) ,  (5.14) 

where V and Vi stand respectively for ( a x ,  a,) and (axi, a,J. Since r is independent 
of the fast coordinate X ,  it does not contribute to the wavenumber a t  the leading 
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order. S-, is a function of both q5 and c2 and we obtain, in accordance with the chain 
rule, 

as-, as-2V 
2 2 >  kE = VS,+-V2a2+- 

aa2 ac2 
(5.15) 

S-,V,C,--V,U, . (5.16) 
as-2 a$ 1 i.e. 

The horizontal component of kE is then 

[KB cos $S-, + (1 + KB COS $) -1 + O(s), 
as K kE =O- 
aX 1-K2B2 aq5 

(5.17) 

k E  2- - 
k 

1 - 3KB cos q5 + 4K2B2 cos2 q5 - 2K3B3 cos q5 sin2 Q 
(1 - K2B2) (1 - 2KB cos $ + K2B2)2 

i.e. 

-K4B4( 1 + 4 c0s2 $) + K5B5 cos q5( 1 + 2 cos2 $1 + +O(e). (5.18) 
( 1  -KZB2) ( 1  - 2KB cos q5 + K2B2), 

For small KB, (5.18) reduces to the classical result of Longuet-Higgins & Stewart 
(1960) : 

-- k,E - l+KBcos$+O(e). (5.19) k 

For finite KB, k,E has the following values at the long-wave crest, trough, and the 
point of zcro-crossing : 

1 - 2KB + 3K2B2 kxcrest - kEtrough - 1 + 2KB + 3K2B2 E 

- (5.20a, b )  -- 
k ( l - K B ) 3  ' k (1 + K B ) ~  ' 

and ( 5 . 2 0 ~ )  

Note that k,E is positive a t  the crest, the trough, and at  the zero-crossing of the long 
wave. 

Next, the vertical component of the wavenumber k: is, to leading order, 

(5.21) 
as, K as- 
aZ 1-K2B2 a$ k,E = -+ [ (1 -KB cos q5) 8-, +KB sin q5 -1 + O(e), 

so that 

k: - KB sin $ - - 
k (1 - K2B2) ( 1  - 2KB cos $ + K2B2)2 

x [ ~ - ~ ~ K B c o s Q - ~ K ~ B ~ c o s ~ ~ ~ + ~ K ~ B ~ c o s ~ ~ - K ~ B ~ ( ~  + 2  cos2q5)]+O(e). (5.22) 

Note in particular that 
E E 

(5.23a, b )  kz crest 'z trough - 0, -- 
k K 
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FIGURE 2 ( a ,  b ) .  For caption see facing page. 

B, we have 

krcrossing = + K B + o ( K ~ B ~ ) .  
k 

(5.24) 

Combining (5.18) and (5.22) we get 

kE 
k - [ 1 - 6KB cos $ +KZB2(  1 + 16 COS* $) - 8K3B3 cos $( 1 + 2 C O S ~  $) -- 

+ 2K4B4( - 1 + 2 cos2 $ + 2 c0s4 $) + 4K5B5 cos $(5 + 2 cos2 $ + 2 C O S ~  $) 

-2K6B6( 1 + 18 C O S ~  $ + 10 C O S ~  $) 

+ 8K7B7 cos $( 1 + 2 cos4 $) +KEBE( 1 + 44 COS* $ - 20 cos4 $) 

- 2 ~ 9 ~ 9  cos $(7 + 12 cos2 $5 -4 cod$)  

+K"B1O( 1 + 4 cos2 q5 + 4 cos4 $)I+ x (1 -K2B2)-'( 1 -2KB cos q5 +K2B2)-'. (5.25) 

Its value at the zero-crossing can be easily obtained by setting cos$ = - I D .  
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FIQURE 2. Comparison of present theory with Longuet-Higgins (1987, marked here by 0). (a) 
Variation of effective gravity along the phase of a long wave. (b) Normalized wavenumber of the 
short wave at the crest ( k ,  = kc,,,t/kcro,sing, upper curves) and the trough ( k ,  = ktrOUBh/kCrOSsing, lower 
curves) of the long wave. (c) Normalized short-wave steepness at the crest ( r ,  = (kEA),,,,,/ 
(kEA),ro,,ing) and trough (r ,  = (kE~),,,,,,/(kEA),,,,,,,) of the long wave. (d )  Normalized short-wave 
steepness (T = kEA/(kEA)crOSsing) along the phase of a long wave. In  (a) solid lines are based on 
zero-crossing of the Stokes wave, dashed lines on zero-crossing of the Gerstner wave. 

We now compare these analytical formulae with the numerical results by Longuet- 
Higgins (1987) for irrotational long waves of finite steepness. First, he plotted 
k/kcrossing and kA/(kA)crossing, where the subscript ‘ crossing ’ refers to zero crossing 
of the long Stokes wave. Among three sets of his calculations, for kcrossing/ 
K = 2,10,100, we choose the last with the largest scale contrast for comparison. 
Since the zero-crossings of Stokes wave are different from those of Gerstner’s wave 
by O(KB),  we plotted our results according to two normalizations, one by E at the 
Stokes-wave crossing, as solid lines, and one by E at the Gerstner-wave crossing, as 
dashed lines. For the range 0 < KB < 0.4, the short wavenumbers at the long-wave 
crests and troughs are compared in figure 2 ( b ) ,  and the corresponding short-wave 
steepnesses in figure 2 (c ) .  Variation of the steepness ratio of the short wave over one 
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long wavelength is compared in figure 2 ( d )  for KB = 0.1,0.2 and 0.3. The agreement 
with Longuet-Higgins is somewhat better by the first normalization. Crudely 
speaking, the agreement is within O(K2B2) for both normalizations, consistent with 
the difference in vorticity. 

Finally, we compare the inclination of the short wave kE, 

tan 9 = kB/k,E, (5.26) 

with the inclination of the long-wave surface 

(5.27) 

after using (II.5.9.u-c). Straightforward manipulations show that the difference 
between the two slopes is of O(K3B3) for small KB. Therefore the short wave 
essentially propagates along the surface of the long wave. 

5.3. Dispersion relation in the Eulerian fra.me 

In  existing theories where both long and short waves are assumed to be irrotational, 
it is known that the dispersion relation of the short wave can be written as 

u2 = geff kE (5.28) 

Here (4.9) can be rewritten in terms of the Eulerian short-wave wavenumber k E  and 
the effective gravity as follows 

where geff/g is given by (5.7) and k E / k  by (5.25). For small 

__ = 1 - 2K2B2 cos2 $ + O(K3B3) 
geff k E  

(5.29) 

KB,  we have 

(5.30) 

Thus (5.29) differs from (5.28) by the same order as the vorticity in Gerstner's long 
waves. 

5.4. Absolute and intrinsic frequencies 

We now examine the absolute frequency w of the short waves, as seen by an observer 
fixed in space, which is to be distinguished from the intrinsic frequency u seen by an 
oscillatory fluid particle, 

(5.31) 

where the time derivatives are taken by fixing the Eulerian coordinates. Again the 
contribution from r is negligible. Note from (3 .6b )  that 

52 
(1 -KB cos $)-I = 21,. x, = XIx, x, 1 --KB cos 4'  (5.32) 

With the help of the dispersion relations, the normalized absolute frequency is simply 

+ O ( € ) .  (5.33) 
w l u  1 +K2B2 - 2KB + (1 + K2B2) cos 
- = 1 +--KB 
U E SZ 1 -KB cos 6 (1 - 2KB cos @ + K2B2)2 
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FIGURE 3. Contours of w / u  in the (KB,$,)-plane. Solid lines: w / u  = I .  Othd lines correspond 
to w / u  = 0 for various &/a. 

Owing to the ratio (l/e)(a/SZ), the difference between intrinsic and absolute 
frequencies can be large. Also, they can be equal to two points in a long-wave phase 
if 

2KB 
1 + K2B2 ' 

cos$ = (5.34) 

The Eulerian phase corresponding to the solution of (5.34) is shown by two solid 
curves in figure 3. Also shown are the curves along which the absolute frequency w 
vanishes, for a range eSL/a. If KB < (KB),,, - &/a, w(&) is always positive for all 
&, implying that the short waves propagate to the right everywhere for the length 
of a long wave. For KB > (KB)m,n, w ( $ )  may assume negative values in the 
neighbourhood of $E = K. To a fixed observer the short wave propagates to the left, 
hence appears to be reflected, in the trough of a long wave. 

6. Linearized sideband instability of a short Stokes wave 

examine the instability of a Stokes wave subject to sideband disturbances. 
As in the classical case without long waves (Benjamin & Feir 1967), we first 

6.1. Short Stokes wave on a long wave 

We define the short Stokes wave to be the solution of (4.39) independent of 6 ,  i.e. 

= W S ( $ ) l  eiPY), (6.1) 

where both JdSJ and 
the long wave is absent. Substitution of (6.1) in (4.19) yields 

are real. It is an extension of the classical Stokes wave when 

[ E S Z ~ + ~ K B C O S # - ~ K ~ B ~  
1+-- 

KB sin $ 
2 a  1-2KBcosq5+K2B2 

where 
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FIGURE 4. Amplitude variation of the short Stokes wave ldl, as a function of the long-wave phase. 
For comparison the linearized approximation given by A / J  in (5.3) is shown by dashed curves. 

and a is defined by (4.40). The solution is 

where N ( 4 )  = 1 - 2KB cos $ + K2B2. (6.3b) 

Note that the leading-order term in (6.3) is identical to (5.3) since $ = Qt,+O(s), 
while the correction due to the long wave is represented by the exponential term. 
Nonlinearity of the short wave does not affect this quantity, as in the Stokes wave 
in calm water. In  figure 4 the variations of Idsl along with IAI/A’(as defined by (5.3)) 
are plotted against the Eulerian phase $E of the long wave for several KB. The phase 
p is then given by 

where 

( 6 . 4 ~ )  

(6.4b) 

The corresponding nonlinear modification of the Lagrangian wavenumber and 
frequency are defined by 

It follows straightforwardly that 

which is negligible, and 

(6.5a, b)  



Evolution of a short surface wave on a long surface wave 435 

where use is made of the definition (4.40) of a. Again, for KB = 0, G ( + )  = 1 and the 
classical result is recovered : 

- $ 2 ( k J ) 2 + ~ ( E 3 ) .  (6.9) 
ACT _-  
u 

We remark that the solution by Zhang & Melville (1990) for a steady short wave, 
with both amplitude and phase locked to  the irrotational long-wave profile, has a 
more complicated form than (6.3) here. 

6.2. Linear instability of the short Stokes wave 

Upon substituting 

into (4.39) we get the canonical form of the evolution equation, 

&(51+) = &A+) 4 L  $1 (6.10) 

(6.11) 

Let the amplitude b and phase SaWdf; of be defined by 

g =  bexp(iSWd6). (6.12) 

where both b(c,q5) and W(c,+) are real. Equation (6.11) can be split into two real 
equations 

and 

(6.13 a) 

(6.13b) 

In  view of (6.10), the Stokes wave corresponds to b, = 1 and W, = 0. We then 
consider wave-like perturbations : 

b = 1 +6eitu, W = ~ e i v ~ .  (6.14) 

For infinitesimal 6, @ the linearized equations are 

and -- a@ - -2iav[G-g]6. 
a+ 

(6.15 a) 

(6.15b) 

Since G(+;eQ/u) is 2x-periodic in +, Floquet theory is needed. By a standard 
numerical procedure (cf. Nayfeh & Mook 1979 and Iooss & Joseph 1980), we first 
compute the Floquet multipliers pl ,z  and then deduce the growth rates as In Ipl,zl. 

For e k J  = 0.13, e Q / c  = 0.07, which corresponds to a = 0.125, we display the 
effects of varying KB and the sideband wavenumber v. Only the larger of the two 
growth rates In Ipl,zl is plotted versus v and KB, in figure 5. First, when the long wave 
is absent, the band of instability reduces to that of Benjamin & Feir with the 
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6 0  

FIGURE 5.  Linear growth rate as a function of long-wave slope KB and disturbance wave- 
number v. with e k L =  0.13 and a = 0.125. 

U 3 
6 

FIGURE 6. Linear growth rate as a function of short wave a and disturbance wavenumber v, 
with KB = 0.3 and c k A  = 0.13. 

bandwidth given by 0 < u < 2 d 2 .  When the long-wave slope increases, the unstable 
bandwidth decreases slightly a t  first, then increases again. Furthermore, the 
maximum growth rate decreases and levels off as KB increases. For sufficiently large 
v, new bands of instability emerge, and their maximum growth rate increases 
monotonically with KB. 

The parameter a increases with increasing short-wave steepness EkJ and with 
decreasing frequency ratio EQ/CT.  Figure 6 shows the growth rate of unstable 
sidebands for K B  = 0.3 as a function of v and a for a fixed EkA = 0.13. First, many 
new bands of instability now appear, with the main band corresponding to the 
classical theory of Benjamin & Feir without the long wave. For greater a, the new 
bands gather more closely toward the main band, while both their width and 
maximum growth rate increase?. Thus one or more higher harmonics of an unstable 

t When this paper was nearly completed we learned that  Professors J .  Zhang and W. K. Melville 
had obtained similar results by studying the linearized instability of the steady short wave on a n  
irrotational long wave. In  !heir solution the wave steepnesses of the short and long waves are 
assumed t o  be O(E)  and O ( @ )  respectively. 



Evolution of a short surface wave on a long surface wave 437 

sideband may themselves be unstable, thereby leading the evolution process to much 
greater complexity. 

7. Numerical solution of the envelope equation 
Guided by the results of the preceeding section, we now solve numerically the cubic 

Schrodinger equation (6.11) to examine the later development of a pair of sidebands 
efi”c with equal amplitude. We assume the disturbance to be in the main unstable 
band. 

From (6.12) and (6.14), we may deduce at  the onset of instability 

d(5,$ = 0) = 1+$(6e”’E+*)+$i (@ei”E+*)d[ J 

It is evident from (6.15a, b)  that the complex quantities 6 and @ are always out of 
phase by in. Thus the ratio m/6 is purely imaginary and, for a real 6, (7.1) may be 
written as 

(7.2) 

which defines el and 0,. For numerical convenience we shall rescale the horizontal 
coordinate according to 

&(5,4 = 0) = 1 +@ [ 1 +- E] (e i v c  +e+t) = 1 +el eiS1 cos v ~ ,  

c= v t  (7.3) 

so that the initial sideband has wavelength equal to 27c. After rescaling by (7.3), 
(6.11) takes the canonical form 

(7.4) 

which contains the parameter v. 
A pseudo-spectral split-step method used by Lo & Mei (1985) for solving a fourth- 

order Schrodinger equation is used again here. The normalized 2 is expressed as 
a finite Fourier series, defined at  N grid point 6 in 17c,7c]: 

Periodic boundary conditions are imposed. 
In  all numerical examples to be discussed, we have chosen E ,  = 0.1, while v and 

@/o(0) are those corresponding to the maximum unstable growth according to the 
Floquet theory. The steepnesses are kept fixed at e k 2  = 0.13 for the short wave, and 
KB = 0.3 for the long wave. The frequency ratio E S Z / r ,  hence a, is allowed to vary 
within a broad range. All calculations were performed with 64 Fourier harmonics. We 
shall present, for each a,  the time evolution of the short-wave envelope 121 for 50 
long-wave periods. In addition, we present the time evolution of the spectral 
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FIGURE 7. Nonlinear evolution of short-wave amplitudes in ( a )  the  Fourier domain, and ( b )  the 
physical domain with KB = 0.3, skx  = 0.13. a = 0.05, v = 1.604 and 0, = -0.789. 

components, normalized by the initial amplitude of the short Stokes wave. I n  figures 
7(a) -12(a) ,  m = 0 corresponds to the short carrier (Stokes) wave, m = 1 to the 
sideband, and m = 2 , 3 , .  . . to the higher harmonics of the sideband. Note that only 
those components with positive wavenumbers need to be plotted since the evolution 
equation (7.4) is symmetric in c, implying that the Fourier transform is even in m. 

First for a small a = 0.05, i.e. s Q / r  = 0.1864, the corresponding maximum growth 
occurs at u = 1.604 and O,(O) = -0.789 (cf. (7.2)). The envelope evolves in the 
classical fashion of Fermi-Pasta-Ulam recurrence, as shown in figure 7 (a ,  b ) .  The 
time series of the Fourier components also show cyclic exchange of energy between 
the carrier wave and the sideband, whose higher harmonics are carried along 
passively, see figure 7(a). 

For a = 0.07 almost-periodic recurrence is still the dominant feature, except that 
the recurrence wavelength is shortened and less uniform, as shown in figure 8 ( a ,  b ) .  

For a = 0.1, the envelope evolution is now more complex (figure 9a,  b ) ,  owing to  
the fact that  the third and fourth harmonics of the principal sideband are now 
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FIGURE 8. As figure 7 but for a = 0.07, v = 1.626 and O0 = -0.792. 

unstable and take an active role in the nonlinear interaction. The envelope is now 
becoming irregular in appearance. 

When a is increased to 0.125, (v = 1.638, O,(O)  = -0.8089 a t  the maximum 
growth), the envelope evolution appears more chaotic (figure lob). The spectral time 
series shows that the total number of active harmonics is still limited (figure lOa), 
therefore the original narrowband assumption is approximately intact. 

For a = 0.15, energy is exchanged chaotically but now more evenly among the low 
harmonics, within a somewhat broader band (figures 11 a ,  b) .  Finally, as a speculative 
indication of the trend, numerical results are shown in figures 12 (a ,  b )  for a relatively 
large a = 0.25 which is somewhat outside the realm of the present asymptotic theory. 
Chaos is clearly rampant and is accompanied by a broader spectral band. 

We have also performed calculations for a milder long wave with KB = 0.2, for 
a = 0.005, 0.125 and 0.15 and obtained similar but slightly less dramatic results 
showing a milder tendency towards apparent chaos with increasing a. This is 
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FIGURE 9. As figure 7 bu t  for a = 0.1, v = 1.637 and 0, = -0.80. 

consistent with the fact that the linear growth rate for the sideband depends only 
weakly on KB, as shown in figure 5 .  

8. Nonlinear instability of sidebands by a truncated dynamical system 
The existence of multiple bands of instability certainly triggers the complex 

evolution at  the initial stage, as one or more higher harmonics of the unstable 
sideband can also become unstable. To better understand the transition to chaos a t  
the nonlinear stage i t  is useful to know whether this triggering mechanism is 
essential. We therefore examine a cruder version of the nonlinear Schrodinger 
equation by keeping only two active modes in a Fourier series expansion, i.e. the 
basic Stokes wave and just the pair of unstable sidebands. The resulting 
approximation is a low-dimensional non-autonomous dynamical system which is 
much easier to analyse numerically. This kind of truncation has been used 
successfully before to facilitate analytical examination. For example, to study the 
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FIGURE 10. As figure 7 bu t  for a = 0.125, v = 1.639 and 8, = -0.8089. 

second harmonic generation in shallow-water waves, Mei & Unliiata (1973) and 
Bryant (1973) have reduced the KdV equation to two coupled ordinary differential 
equations for the first and second harmonics ; the recurrence of the second harmonic 
is then predicted by the celebrated solution of Armstrong et al. (1962) in nonlinear 
optics, and agrees well with experiments. For deep-water waves on an otherwise calm 
sea surface, Infeld (1981) and Stiassnie & Kroszynski (1982) have shown that by 
keeping only the Stokes wave and a pair of unstable sidebands, the reduced ordinary 
differential equations can be solved analytically and yield all the essential nonlinear 
features of Benjamin-Feir instability. We shall therefore eonduet a similar 
examination. 

8.1. Berivation of the truncated dynamical system 
To follow events subsequent to the initial instability, wc assume thc following 
truncated Fourier expansion for J Z ? ( ~ ,  #) : 

( 8 . 1 ~ )  
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FIGURE 11. As figure 7 but for a = 0.15. v = 1.638 and 8, = -0.817. 

where do and dl are respectively the complex amplitudes of the carrier wave and 
the sideband. They are required to  satisfy the initial conditions 

J0(+ = 0) = 1 ( 8 . 2 ~ )  

and ;[- 3 1 -  -dl(+ = 0) = - b + -  
d2 

( 8 . 2 b )  

corresponding to the instability theory of Floquet. The factor 1 / 4 2  is introduced in 
(8.1) so that the total energy is proportional to Idol2 + Idl12. 

When (8.1) is substituted in (6.11), the cubic term [dlzd becomes 

Ido1*do+2; 2 ; + 2 1 d - J 2 d O  

1 +-{d: .-d:+212012 21+$/~112 dl} {e-’”~+ei”~}+ higher harmonics. (8.3) 4 
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FIGURE 12. As figure 7 but for a = 0.25, v = 1.615 and 0, = -0.865. 

It follows by keeping only two harmonics that 

The parametric dependence of G on eQ/u is suppessed for brevity. These truncated 
equations couple the two amplitudes do and d,  nonlinearly. 

8.2. Reduction to Hamiltonian equations 
Next, we introduce the action and angle variables which represent physically the 
energy and phase of each mode, 

do = (21,)tei60, dl = (21,)tei61. (8.5) 

15 FLM 235 
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Separating the real from the imaginary parts of (8 .4a ,  b ) ,  a non-autonomous 
dynamical system of the fourth order is obtained: 

- a 0  = 4aG(+)I,I,sin2(8,-00), (8 .6a)  
d+ 

= -aG(q5) (21, +PI, + 2Zl cos 2(O, - O,)}, (8.6b) 
d+ 

- a1 = - 4aG(+)1011 sin 2(01 - O,), ( 8 . 6 ~ )  
dq5 

(8 .6d)  

They can be expressed as a Hamiltonian system 

with the Hamiltonian 

%(I,, O,, I,, 01, #) = &XV~I ,  - aG(+)  {G + 9; + 42, I ,  + 21, I ,  cos 2( 8, - O,)}. (8.8) 
Since the angles O,,, appear only in the difference form, we introduce the following 
canonical contact transformation via the generating function F ,  

= OO-Ol ,  $l = Bo+Ol, F = (O,-B,)  J ,+(O,+O,)  Jl. (8.9a-c) 

It then follows by definition that 

(8.10) 

The Hamiltonian X may now be expressed in terms of these new variables 

(8.11) 
which is cyclic in $, ; therefore, 

(8.12) 

and the action variable J, is a constant of motion. Since from (8.10), 

J ,  = i(Io-Il), J, = $(Io+Il) ,  (8.13) 

(8.12) clearly implies energy conservation. Now the contact transformation (8.9) is 
canonical, hence we may reduce the Hamiltonian equations to 

a x  
d+ a$, 
dJ, = Jo = -- = 4uG(+) (J:- J ; ) s i n 2 ~ , ,  (8.14 a )  

(8.14b) 
d$, . ax 
dq5 aJ,  
-=$ --=-I 4av2 + aG(q5) {3J, + J, + 4J, cos 2$0}, 
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FIGURE 13. (a )  Poincar6 map in the plane (Jo,  jo) .  ( b )  Details of the Poincar6 map in the vicinity 
of the corner. (c) Frequency spectrum of J ,  with KB = 0.3, shd = 0.13, a = 0.05, v,, = 1.604 and 
+o(o) = -e,(o) = 0.789. 

which comprise a non-autonomous dynamical system with just two variables, and 
can easily be examined numerically. 

8.3. Numerical solution 
For a given set of initial data, the Hamiltonian system is integrated numerically by 
an Adams-Bashforth schemet. We shall present our results in a Poincard map by 
taking stroboscopic projections of a trajectory onto the phase plane of J ,  and J,,  at 
the interval of A$ = 27c. Thus each phase point coincides with the passage of a long- 
wave crest. As in $7,  we shall analyse the effects of the frequency ratio d2/c for fixed 
e k z  = 0.13 and KB = 0.3. The initial conditions are chosen to correspond to the most 
unstable sideband according to Floquet calculations of $6. In terms of the initial 
amplitudes, do = 1 and 1dJ = s1/2/2, the implied initial values of the action and 
angle variables are 

(8.15) 
1 E  

lo = +, e, = 0, (u,)~ = 2 
2/2' 

t All computations in this section were performed with the commercial software, Dynamical 
Systems I & IT. 

15-2 
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FIGURE 14. As figure 13 but for a = 0.125, v,,, = 1.639 and @@) = -O,(O) = 0.8089. 

The implied values of J ,  and J ,  are in turn derived from (8.13) : 

Jo(# = 0) = Q ( 2 - 4 ) ,  Jl(# = 0) = Q ( ~ + E ; ) .  (8.16a, b)  

From (8.9a), the initial value of $o is 

$,($ = 0) = -01(# = 0). (8.17) 

As in $7 ,  we choose 6 ,  = 0.1 in all our calculations here and vary &/IT, or 
equivalently a. Recall from figure 6 that the larger the value of a, the more the 
unstable the bands and the larger the corresponding maximum growth rate. We shall 
only consider cases where the higher harmonics of d, are either stable or just weakly 
unstable, in order not to violate seriously the restrictions on our truncated dynamical 
system. 

For a very small value a = 0.05 corresponding to figure 7, the second and the third 
harmonics of d,  are both linearly stable, while the fourth harmonic is unstable with 
a Floquet multiplier equal to 1.05. Therefore our dynamical system should yield 
meaningful results. The Poincare' map consisting of 2500 points falls on a closed curve 
in the shape of a tear drop, implying a quasi-periodic orbit, see figure 13(a); the 
magnified portrait of the corner shows a sharply defined curve (figure 13b). The 
power spectrum of J ,  is characterized by isolated peaks including one at a very low 
frequency (figure 13c). 

We omit the case a = 0.1 since the second harmonic of the most unstable sideband 
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FIGURE 16. As figure 15 but for a = 0.125, Y,,, = 1.639 and $&O) = - B , ( O )  = 0.8097. 

is also unstable. Consider now 01 = 0.125. Again only the fourth harmonic of A?, is 
additionally unstable with a Floquet multiplier equal to 1.11. In the Poincark map 
the density of phase points appears to be greater near the corner, see figure 14(a). 
Upon magnification, phase points are found to splatter near the corner, as seen in 
figure 14(b). This suggests the onset of chaos, as is confirmed by the flat power 
spectrum of J ,  shown in figure 14(c). 

For the same a, we let the initial phase angle be slightly different from those for 
the maximum growth. For $ , (O)  = 0.8080, the Poincark map is now drastically 
changed to a closed orbit consisting of broken curves, as shown in figure 15 (a) .  Upon 
magnification of the corner, islands are revealed in figure 15 ( b ) .  For another value of 
$ , (O) ,  equal to 0.8097, the Poincar6 map is shown in figure 16(a). Different islands 
are seen in the corner neighbourhood after magnification, in figure 16(b). This is 
evidence that the phase trajectory is sensitive to initial data, and that chaos is not 
confined to the most unstable state. 

With a view to suggesting the possible trend, we now present in figures 17 (a)-17 ( c )  
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results for a = 0.25, 0.3 and 0.45, extending beyond the legitimate realm of 
applicability of the truncated system. The region of chaos in the phase plane expands 
rapidly with increasing a, and the tear drop is ultimately filled by phase points. 

Since chaos can occur when the initial phase parameter does not necessarily 
coincide with the prediction of the linearized Floquet theory, we have examined the 
basin of chaos measured by the ratio A$,,(0)/2n, where the numerator represents the 
union of all initial phase angles leading to chaos (a ratio of 1 means that all values 
of the initial phase yield chaos). With KB and e k z  being fixed as before, figure 18 
shows that the ratio so defined increases with a, as expected. 

Although all discussions here are for a very steep long wave with KB = 0.3, 
calculations for a milder long wave with KB = 0.2 again show qualitatively similar, 
but slightly less dramatic results, which need not be presented here. 

9. Concluding remarks 
In  this paper we have considered the linear and nonlinear stages of Benjamin-Feir 

instability of a short gravity wave, subjected to  the parametric excitation of a finite- 
amplitude long wave. Owing to  the inherent nonlinearity in the short wave and its 
nonlinear interaction with the long wave, instability of the short wave can lead to 
chaotic evolution after a long time. This is shown by a simple model of the long wave 
which has finite vorticity. This type of mathematical deduction based on the 
assumption of strictly periodic long waves, with or without vorticity, is of course a 
mathematical idealization, but it suggests a mechanism that may lead to  the 
irregular appearance of the ocean surface. Precise confirmation by laboratory 
experiments is expected to  be difficult, since to generate two gravity-wave trains 
with such vastly contrasting scales would require a wavetank of extraordinary 
length. In nature and in the laboratory there are other instability mechanisms that 
both the short and long waves are subjected to and that are not accounted for here. 
Therefore, theoretical extensions of the present work would be desirable in several 
directions. First of all the slow-modulation assumption here implies narrowbanded- 
ness which is not easily upheld because of the multiple bands of instability. A theory 
based on Zakharov’s formalism would be very useful. It is also worthwhile to 
examine the mechanism of quartet resonance of short waves during the passage of 
much longer waves. I n  addition, the effects of capillarity, the unsteadiness of the long 
wave, the inevitable presence of dissipation with or without breaking in both short 
and long waves, and the forcing by wind, etc., may all play decisive roles in the 
complex evolution. I n  view of its simplicity, Gerstner’s exact solution may yet serve 
as a convenient stepping stone towards the better understanding of some of these 
important aspects. More numerical investigations based on irrotational long waves 
are of course also worthwhile. 

This research has been supported by the Fluid Mechanics programs of the US 
Office of Naval Research (Contract N00014-90-5-1163) and the US National Science 
Foundation (881321-MSM). During the course of this study we have benefited from 
discussions with Professor Jack Wisdom of MIT. Preliminary results were presented 
at the Advances in Coastal Engineering Conference a t  University of Delaware on 
November 1,1990. Comments by referees have been very helpful in the final revision. 
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a 3 x ,  ax-, a 3 x ,  ax-, a3x ax-, a3x, ax-, 
+2------+2-- + 2 2 - -  2-- 

atlacat aa, at,acat aa, ac,at,at aa, at,aaat ac, 
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Free-surface boundary condition 

azx, a2x a2x aZx, az, ax, az, 
-+2L+--J+2-+g-+g-+g- 
a t 2  at,at at; at2at aa aa, au, 

Appendix B. Zero-crossings of the Stokes wave 
Following the notation of Schwartz (1974), the free-surface elevation of a deep-water 
Stokes wave is given parametrically by 

(B l a )  
an 
n 

y(x) = a , c o s ~ + ~ 2 c o s 2 ~ +  ... + -cosnX+ ... , 

(B I b )  
U 

- x ( x )  = ~ + a , s i n ~ + $ z ~ s i n 2 ~ +  ...+ ?sinnX+ ... , 

where x represents the Eulerian phase ($E in this paper) along the Stokes wave 
profile and the u, are expressed in powers series of the slope h (KB in this paper) as 
follows : 

n 

a, = h-%h3-&h5+O(h7),  U ,  = 2h3-5h4+yhs+O(h8), 

a3 = :h3--h5+O(h7), a 4 -  - ah4--839h'3+O(JLB), 3 18 } ( B 2 )  
and = wh5+0(h7),  = ~ V + O ( P ) .  

The mean surface elevation g is also given in power series of h by 

q = 3,2-Lh4-Uh6+O(h8). 2 24 (B 3) 

Y(X) = !L (B 4) 

The zero-crossings xcrossing are solutions of 

I n  the interval [0,2n], (B 4) admits two solutions in the vicinity of in and $n. By 
symmetry, it is sufficient to examine only the vicinity of in and let 

Substitution of (B 5) in (B 4) with the help of (B 2) and (B 3) yields the values of p ,  
and 

In our notation, x = $E and h = KB. 
Xcrossing = - + ~ h 3  + 6743h5 11520 + o(h7 1. (B 6) 
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